Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Case Rep ; 24: e937955, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2275623

ABSTRACT

BACKGROUND Cardiac allograft vasculopathy (CAV) is a post-orthotopic heart transplant (OHT) complication driven by intimal smooth muscle proliferation and immune hyperactivity to donor heart tissue. Accelerated CAV leads to allograft failure within 1 year after receiving a normal angiogram result. Viruses can contribute to CAV development, but CAV after SARS-CoV-2 infection has not been reported to date. CASE REPORT A 48-year-old man, 5 years after OHT for non-ischemic cardiomyopathy, was admitted to the Cardiac Care Unit with 3 days of abdominal pain, dyspnea, and palpitations. His medical history included hyperlipidemia and insulin-dependent diabetes. He was compliant with all medications. Two months prior, he had a mild COVID-19 case. An echocardiogram and coronary angiogram 6 and 9 months prior, respectively, were unremarkable. Right and left heart catheterization demonstrated increased filling pressures, a cardiac index of 1.7 L/ml/m², and diffuse vasculopathy most severe in the LAD artery. Flow could not be restored despite repeated ballooning and intra-catheter adenosine. Empiric ionotropic support, daily high-dose methylprednisolone, and plasmapheresis were started. A few days later, the patient had cardiac arrest requiring venoarterial extracorporeal membranous oxygenation. Given CAV's irreversibility, re-transplantation was considered, but the patient had an episode of large-volume hemoptysis and remained clinically unstable for transplant. The patient died while on palliative care. CONCLUSIONS Our patient developed accelerated CAV 2 months after having COVID-19. While CAV has known associations with certain viruses, its incidence after SARS-CoV-2 infection is unknown. Further research is needed to determine if prior SARS-CoV-2 infection is a risk factor for development of CAV in OHT recipients.


Subject(s)
COVID-19 , Heart Transplantation , Male , Humans , Middle Aged , Heart Transplantation/adverse effects , SARS-CoV-2 , Tissue Donors , Coronary Angiography , Allografts
2.
Lancet Infect Dis ; 22(12): e370-e376, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2004660

ABSTRACT

On Jan 22, 2020, a day after the USA reported its first COVID-19 case, the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) launched the first global real-time coronavirus surveillance system: the JHU CSSE COVID-19 Dashboard. As of June 1, 2022, the dashboard has served the global audience for more than 30 consecutive months, totalling over 226 billion feature layer requests and 3·6 billion page views. The highest daily record was set on March 29, 2020, with more than 4·6 billion requests and over 69 million views. This Personal View reveals the fundamental technical details of the entire data system underlying the dashboard, including data collection, data fusion logic, data curation and sharing, anomaly detection, data corrections, and the human resources required to support such an effort. The Personal View also covers the challenges, ranging from data visualisation to reporting standardisation. The details presented here help develop a framework for future, large-scale public health-related data collection and reporting.


Subject(s)
COVID-19 , Humans , Universities , Data Collection , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL